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Key Points:6

• Retrieval errors for the SMAP single and dual polarization algorithms are com-7

pared.8

• The single channel algorithm provides poorer estimates for regions with high inter-9

annual variability in vegetation opacity.10

• The single channel algorithm has stronger auto-correlated errors, which is attributed11

to its use of a climatology for vegetation opacity.12
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Abstract13

Knowledge of the temporal error structure for remotely sensed surface soil moisture re-14

trievals can improve our ability to exploit them for hydrologic and climate studies. This15

study employs a triple collocation analysis to investigate both the total variance and tem-16

poral auto-correlation of errors in Soil Moisture Active and Passive (SMAP) products gen-17

erated from two separate soil moisture retrieval algorithms, the vertically-polarized bright-18

ness temperature based Single Channel Algorithm (SCA-V, the current baseline SMAP19

algorithm) and the Dual Channel Algorithm (DCA). A key assumption made in SCA-20

V is that real-time vegetation opacity can be accurately captured using only a climatol-21

ogy for vegetation opacity. Results demonstrate that, while SCA-V generally outperforms22

DCA, SCA-V can produce larger total errors when this assumption is significantly vio-23

lated by inter-annual variability in vegetation health and biomass. Furthermore, larger24

auto-correlated errors in SCA-V retrievals are found in areas with relatively large vege-25

tation opacity deviations from climatological expectations. This implies that a significant26

portion of the auto-correlated error in SCA-V is attributable to the violation of its veg-27

etation opacity climatology assumption and suggests that utilizing a real (as opposed to28

climatological) vegetation opacity time series in the SCA-V algorithm would reduce the29

magnitude of auto-correlated soil moisture retrieval errors.30

1 Introduction31

The Soil Moisture Active and Passive (SMAP) mission [Entekhabi et al., 2010, 2014]32

has provided global surface soil moisture using an L-band (1.413 GHz) radiometer since33

March 31, 2015. Compared with C- and X-band microwave remote sensing, the L-band34

microwave emission has increased sensitivity to soil moisture and improved vegetation35

penetration [Entekhabi et al., 2014]. Hence, SMAP retrieved soil moisture products are ex-36

pected to significantly benefit hydrologic, climate, and land surface/atmosphere coupling37

studies [Entekhabi et al., 2010; Brown et al., 2013; Koster et al., 2016].38

There are two primary SMAP soil moisture retrieval algorithms: 1) the single chan-39

nel algorithm (SCA) and 2) the dual channel algorithm (DCA). The SCA version, which40

uses vertically-polarized brightness (SCA-V), is the current SMAP baseline algorithm.41

Both SCA-V and DCA use the same radiative transfer model but a key difference is their42

treatment of vegetation opacity (τ). In SCA-V, τ is assumed to be proportional to vegeta-43

tion water content (VWC), which, in turn, is acquired via the application of an empirical44
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function to satellite-derived normalized vegetation difference index (NDVI) values. How-45

ever, the real-time application of this approach is complicated by the latency for Moderate46

Resolution Imaging Spectroradiometer (MODIS) NDVI products due to the compositing47

of daily NDVI retrievals to account for cloud cover. In addition, real-time NDVI estimates48

typically contain substantial random noise that can be transferred into soil moisture re-49

trievals. Therefore, in order to maintain the 24-hour latency goal of SMAP Level 2 soil50

moisture products and suppress random errors, the real-time application of SCA-V within51

the SMAP data product stream uses a (seasonally-varying) climatological value of VWC52

calculated from a 2000 to 2010 baseline [Chan et al., 2013]. Soil moisture is then re-53

trieved using vertically-polarized brightness temperature and a value of τ obtained from54

this VWC climatology [O’Neill et al., 2015].55

In contrast, DCA feeds an initial guess for τ and soil moisture into a forward ra-56

diative transfer model. These initial guesses are then iteratively adjusted to minimize the57

difference between simulated and observed dual-polarized (i.e., vertical and horizontal)58

brightness temperature [O’Neill et al., 2015]. Consequently, DCA treats both τ and soil59

moisture as free parameters to be iteratively solved for in a simultaneous manner.60

Due to the low-frequency nature of variations in vegetation health, VWC inter-annual61

anomalies (i.e., the difference between the VWC seasonal climatology and real-time VWC)62

are highly auto-correlated in time. For SCA-V, this potentially leads directly to auto-correlated63

τ errors (since VWC anomalies are neglected) and, by extension, auto-correlated errors in64

SCA-V surface soil moisture retrievals. Therefore, while numerical tests and field valida-65

tions results suggest that SCA generally outperforms DCA [Entekhabi et al., 2014; Chan66

et al., 2016, 2017], the real-time SCA-V algorithm may be prone to auto-correlated error67

in the presence of large VWC inter-annual variability.68

The presence of auto-correlated error in soil moisture retrievals has a number of im-69

portant implications. For instance, the analysis of soil moisture memory [e.g. Koster and70

Suarez, 2001; McColl et al., 2017] should be conducted on a time scale that is longer than71

the soil moisture error auto-correlation length to avoid biased estimates. Likewise, deriv-72

ing root-zone soil moisture estimates via the processing of surface soil moisture retrievals73

through an exponential filter [Albergel et al., 2008] is more vulnerable to auto-correlated74

errors than temporally white errors. This is because the exponential filter is essentially a75

weighted average of surface soil moisture observations, and while white noise can be ef-76
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fectively reduced by averaging, auto-correlated errors will persist after temporal averaging77

and therefore play a dominant role in root-zone soil moisture estimation errors. Finally,78

information concerning soil moisture error auto-correlation is useful for the assimilation of79

surface soil moisture retrievals into land surface models [Crow and Van den Berg, 2010].80

In an optimal data assimilation approach, auto-correlated observation error should be ac-81

counted for via an augmented state vector [Crow and Yilmaz, 2014]. However, existing82

attempts to characterize SMAP soil moisture retrieval errors [e.g. Chan et al., 2016; Col-83

liander et al., 2017; Montzka et al., 2017; Ray et al., 2017] have not directly addressed the84

degree to which these errors are auto-correlated in time.85

Therefore, the primary goal of this study is to investigate both the total variance and86

temporal autocorrelation coefficient of errors in SMAP Level 2 soil moisture retrievals87

generated using both the SCA-V and DCA retrieval algorithms. The analysis will be con-88

ducted using an existing triple collocation (TC) approach [Scipal et al., 2008; Zwieback89

et al., 2013]. In doing so, we seek to quantify both the presence of auto-correlated soil90

moisture errors and attribute the spatial patterns of these errors to specific aspects of both91

retrieval algorithms.92

2 Methods and data collection93

2.1 TC based error analysis94

Suppose three independent soil moisture products are available, and their zero mean95

anomalies (x, y and z) are linearly related to the true soil moisture anomaly (θ) as [Gru-96

ber et al., 2016]:97

x = αxθ + εx (1)
98

y = αyθ + εy (2)
99

z = αzθ + εz (3)

where the αx , αy and αz represent the scale differences between the products and the100

truth, and the εx , εy and εz represent the errors of each product. Note that the soil mois-101

ture anomaly in this study is defined as an anomaly relative to a long-term climatology102

[Chen et al., 2017], which is calculated for each-day-of-year (DOY) by averaging all avail-103

able soil moisture estimates within a 31-day window centered on each DOY across mul-104

tiple years. Anomalies are then calculated as the differences between the actual daily soil105

moisture time series and this long-term climatology. Using a shorter window length may106
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lead to insufficient sample sizes in calculating the climatology. On the contrary, an ex-107

tremely long window length results in an over-smoothed seasonal climatology. A 31-day108

window length is used here as a trade-off between these two considerations. Results pre-109

sented in the supporting materials confirm that key results presented here are relatively110

insensitive to variations in this window length.111

In order to eliminate scale differences, TC analysis typically takes one product as112

a reference and scales the other two products to this reference. Here, we take x as a ref-113

erence product for illustration. Assuming the errors of the three products are mutually114

independent and orthogonal to the truth, the scale parameters can then be calculated as:115

αx
αy
=

xT z
yT z

(4)

116

αx
αz
=

xTy
zTy

(5)

Consequently, the scaled product (x∗, y∗, z∗) can be expressed as:117

x∗ = x (6)
118

y∗ =
αx
αy

y (7)
119

z∗ =
αx
αz

z (8)

The variance of the errors (σ2
x , σ2

y and σ2
z ) in the scaled products can be estimated as:120

σ2
x = 〈(x∗ − y∗)T (x∗ − z∗)〉 (9)

121

σ2
y = 〈(y∗ − x∗)T (y∗ − z∗)〉 (10)

122

σ2
z = 〈(z∗ − x∗)T (z∗ − y∗)〉 (11)

where 〈·〉 denotes temporal averaging. Likewise, the serial lag-1 temporal autocovariance123

of the observation sequences (Lx , Ly and Lz) can be estimated as [Zwieback et al., 2013]:124

Lx = 〈(x∗ − y∗)T
(
x∗L − z∗L

)
〉 (12)

125

Ly = 〈(y∗ − x∗)T
(
y∗L − z∗L

)
〉 (13)

126

Lz = 〈(z∗ − x∗)T
(
z∗L − y∗L

)
〉 (14)

where the subscript “L" denotes a serial lagged-1 vector. The ratio of the error auto-127

covariance (i.e. Lx to Lz) and the error variance (i.e. σ2
x to σ2

z ) is the correlation coef-128

ficient of the observation errors.129
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As shown in Dorigo et al. [2010], the TC analysis is less robust for regions with low130

signal-to-noise ratio (SNR, the ratio of the variance of the soil moisture signal to the vari-131

ance of the total soil moisture retrieval error [Gruber et al., 2016]). In particular, an exam-132

ination of equations (4) and (5) reveals that the TC scaling factors are particularly vulnera-133

ble to sampling errors when the SNR of individual soil moisture products is small. There-134

fore, in order to provide a robust analysis, this study considered TC results only for grids135

where the signal to noise ratio (SNR) of the remotely sensed soil moisture retrievals are136

significantly greater than 0.1 [-] (at p = 0.05 confidence). Following Draper et al. [2013],137

a 1500-member bootstrapping analysis was used to estimate the empirical sampling distri-138

bution of SNR and, by extension, the p value of SNR > 0.1 [-] for each grid. Each boot-139

strapping member was constructed by resampling the original dataset with replacement to140

preserve its sample size.141

It should be stressed that the irregular temporal sampling of soil moisture remote-142

sensing data complicates the definition of a specific time scale time for derived lag-1143

temporal auto-covariances. Although auto-covariance estimates for a specific temporal144

lag scale can be sampled using daily pairs with certain (fixed) temporal lags [Zwieback145

et al., 2013], this requires discarding large amounts of data and is therefore infeasible146

for the (relatively short) SMAP data record. Instead, we utilized all available serial data147

pairs (regardless of their time lag) in calculating a serial lag-1 error auto-covariance us-148

ing equations (12 - 14). For the remote-sensing data utilized here (see below), the mean149

time lag of these serial pairs (i.e., that mean time scale associated with a “lag-1" serial150

auto-covariance analysis) is 4.8 [days] with a standard deviation of 0.5 [days]. However,151

as noted above, this study primarily focuses on the differences between SCA-V and DCA152

error structures. Since the two retrieval products have exactly the same temporal sampling,153

time scale ambiguities associated with their irregular temporal sampling will not impact154

these differences.155

2.2 SMAP L2 passive soil moisture data156

The Level 2 SMAP soil moisture product (SPL2SMP) provides soil moisture re-157

trievals using both SCA-V and DCA within a 36-km EASE2 grid. As noted earlier, the158

key difference between SCA-V and DCA lies in their treatment of vegetation opacity (τ).159

In SCA-V, a NDVI climatology is first calculated using data collected from 2000 to 2010.160
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Then, vegetation water content (VWC) is calculated using the NDVI climatology as:161

VWC =
(
1.9134NDVI2 − 0.3215NDVI

)
+Wstem

NDVImax − NDVImin
1 − NDVImin

(15)

where Wstem is a stem factor estimated using MODIS International Geosphere-Biosphere162

Programme (IGBP) land cover types [O’Neill et al., 2015], and NDVImax and NDVImin are163

the annual maximum and minimum NDVI at a given location. The vegetation opacity (τ)164

is then calculated as:165

τ = b × VWC (16)

where b is a temporally constant proportionality value. In SMAP, the b value is deter-166

mined using a look-up table based on IGBP land cover types [O’Neill et al., 2015]. In167

DCA, soil moisture and VWC are simultaneously estimated by minimizing the differences168

between simulated and observed vertically and horizontally polarized brightness temper-169

ature [O’Neill et al., 2015]. Here, SCA-V and DCA retrievals from the 6 AM local solar170

time descending pass during the period between March 31, 2015 and April 30, 2017 (with171

a revisit time of 2 to 3 days) were used. Full details about both algorithms can be found172

in O’Neill et al. [2015]. As noted above, SCA-V is the current baseline algorithm for all173

official SMAP Level 2 and 3 radiometer-based soil moisture products.174

2.3 Advanced Scatterometers (ASCAT) soil moisture data175

The Advanced Scatterometer (ASCAT) sensor onboard the Meteorological Operational-176

B (MetOp-B) satellite measures C-band (5.3 GHz) radar backscatter. The ASCAT Level 2177

(v5) soil moisture index product used here has a spatial resolution of 25-km and is re-178

trieved using a change-detection algorithm developed by the Vienna University of Tech-179

nology [Wagner et al., 1999; Naeimi et al., 2009]. A vegetation climatology is used for180

removing vegetation impacts during the near real-time retrieval. Here, the ASCAT soil181

moisture retrievals were resampled onto a 36-km EASE2 grid consistent with SPL2SMP.182

To minimize the temporal differences between SMAP and ASCAT retrievals, only de-183

scending ASCAT data (9:30 AM local solar time overpass) were used in this study.184

2.4 NLDAS 2-Noah data185

A third independent soil moisture product was collected from the Noah model run186

quasi-operationally as part of Phase 2 of the North American Land Data assimilation Sys-187

tem (NLDAS-2) experiment [Xia et al., 2012]. Soil moisture estimates for the top layer188
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of the NOAH model (10 cm in depth) at 6 AM were utilized directly for the TC analysis.189

This hourly soil moisture product has a spatial resolution of 0.25 degrees, with units of190

kg/m2. To match the SMAP spatial grid, we resampled this Noah soil moisture product191

onto a 36-km EASE2 grid and converted the units of the resampled product from kg/m2
192

into volumetric soil water content (m3/m3). The NOAH modeled soil moisture was se-193

lected as the reference soil moisture product in the TC error analysis.194

2.5 NDVI data195

As noted above, climatological values of NDVI are used for calculating τ in the196

SCA-V soil moisture retrieval algorithm. Therefore, the contribution of τ error to the197

(total) error presented in SCA-V retrievals is due (in part) to the deviation of τ from its198

climatological expectation. To estimate this quantity, MODIS 16-day NDVI composite199

(MOD13C1) data with a spatial resolution of 0.05-degrees were retrieved from the on-200

line NASA Land Processes Distributed Active Archive Center (LP DAAC) for the period201

of 31 March, 2015 to April 30, 2017. These NDVI data were then resampled onto a 36-202

km EASE2 grid. Following Chan et al. [2013], days without NDVI data were filled via203

piece-wise linear interpolation. To be consistent with soil moisture anomalies, the same204

approach (see section 2.1) was applied to calculate the NDVI climatology for each DOY.205

Using equation (15), this NDVI climatology was then converted into a VWC climatology206

and, subsequently, into a τ climatology using equation (16). In parallel, benchmark val-207

ues for τ were calculated directly using the interpolated NDVI time series. The difference208

between climatological and benchmark τ values represent an inter-annual anomaly (eτ)209

which is explicitly neglected in SCA-V soil moisture retrievals. The temporal standard210

deviation of eτ (στ) expresses the statistical magnitude of this anomaly. Likewise, the se-211

rial lag-1 auto-covariance of eτ (Lτ) captures the τ anomaly temporal auto-correlation212

strength. To be consistent with the TC soil moisture analysis, only days where sufficient213

soil moisture data were available for a TC analysis were considered when analyzing the214

magnitude and the temporal auto-correlation strength of τ.215
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3 Results216

3.1 The total error of SCA-V and DCA retrievals217

Figures 1 a and b plot the standard deviation of the total errors in SCA-V and DCA218

retrievals derived using the TC approach described above. Grey areas in Figure 1 (and219

Figure 2) represent pixels where TC-based SNR estimates of either SMAP or ASCAT re-220

trievals are not significantly larger than 0.1 [-] (at p = 0.05 confidence; see section 2.1).221

Within CONUS, SCA-V and DCA retrievals exhibit similar spatial error distributions. In222

particular, surface soil moisture retrievals from both algorithms have the largest errors223

along both CONUS coasts and in heavily-vegetated portions of eastern CONUS. Con-224

versely, lower errors are found in lightly-vegetated areas of west-central CONUS. As ex-225

pected, spatial variations in total error variances for both algorithms are correlated with226

the spatial distribution of VWC (Figure 1 c). On average, SCA-V retrievals exhibit lower227

errors (σsca = 0.017 m3/m3) than DCA retrievals (σdca = 0.019 m3/m3). As noted above,228

these given values represent the standard deviation of serial errors in the scaled soil mois-229

ture anomalies. It does not include soil moisture seasonality error or multiplicative bias230

(scale) and is therefore not directly comparable to the unbiased root-mean-square error231

reported in Chan et al. [2016].232

Figure 1 d plots differences in TC-derived total error (Dσ) between the two algo-233

rithms. Although the SCA-V soil moisture algorithm generally outperforms the DCA algo-234

rithm, SCA-V retrievals exhibit larger errors for areas of central CONUS (see red shading235

for areas of Dσ > 0 in Figure 1 d). Areas of superior DCA performance are also generally236

collocated with large deviations of τ from its climatological expectation - see the standard237

deviation of inter-annual τ anomalies (στ) plotted in Figure 1 e. Recall that the primary238

difference between SCA-V and DCA retrievals lies in their treatment or τ. Therefore, by239

taking the differences between SCA-V and DCA errors, Figure 1 implies a direct link be-240

tween inter-annual vegetation variability in τ and the localized degradation of SCA-V re-241

trievals relative to DCA retrievals. Figure 1 f further confirms the relationship between242

Dσ and στ . Here, Dσ is binned according to different percentiles of στ , and a positive243

relationship between στ and Dσ is found. A paired t-test was conducted for each bin to244

test if σsca and σdca are statistically different (at p = 0.05 confidence). Results of this245

test confirm that SCA-V significantly outperforms DCA when στ is smaller than its 50th246
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CONUS percentile. Conversely, DCA significantly outperforms SCA-V when στ is greater247

than its 75th CONUS percentile.248

3.2 The autocorrelated errors of SCA-V and DCA retrievals249

In addition to total error, we are also interested in examining the temporal auto-250

correlation of SMAP soil moisture retrieval errors using the TC analysis introduced in251

section 2.1. Overall, SCA-V retrievals show strong temporal error auto-covariance (Lsca)252

over high VWC regions in the eastern part of CONUS (Figure 2 a). In contrast, DCA gen-253

erally has negligible auto-correlated error over the entire CONUS region (Ldca, Figure 2254

b). On average, the serial lag-1 temporal auto-correlation (i.e., Lsca/σ
2
sca and Ldca/σ

2
dca

)255

is 0.364 [-] for SCA-V retrievals and 0.198 [-] for DCA retrievals. This indicates a larger256

amount of error auto-correlation in SCA-V retrievals relative to analogous DCA retrievals.257

Similar to plotted values of στ in Figure 1, the serial lag-1 auto-covariance of eτ258

(Lτ) is plotted in Figure 2 d. As noted above, Lτ captures the degree of auto-correlation259

in inter-annual τ anomalies. Regions with strong positive DL (i.e., large Lsca − Ldca in260

Figure 2 c) tend to correspond to areas with relatively large Lτ values (Figure 2 d). In or-261

der to directly assess this tendency, Figure 2 e bins DL according to different percentiles262

of Lτ , and demonstrates that DL tends to increase with increased Lτ (Figure 2 e). In par-263

ticular, when Lτ is larger than its 25th percentile, SCA-V retrievals have significantly (p =264

0.05 confidence) higher error auto-covariances than comparable DCA retrievals. Taken as265

a whole, Figure 2 suggests that the neglect of inter-annual variability in τ by the SCA-V266

algorithm is associated with the presence of auto-correlated error in SCA-V soil mois-267

ture retrieval errors. It is also worth noting that areas where DCA outperforms SCA-V268

(in terms of total error, Figure 1 d) typically correspond to regions where SCA-V demon-269

strates highly auto-correlated errors (see e.g., the eastern part of CONUS in Figure 2 c).270

Therefore, the introduction of auto-correlated error in SCA-V retrievals via the neglect of271

inter-annual VWC variability appears to be a significant contributor to the uncertainty of272

SCA-V retrievals over these regions.273

4 Discussion and conclusion274

As our capacity to produce satellite-derived soil moisture products develops, it will275

become increasingly important to understand the statistical nature of errors present in276
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them. Here, we develop and apply a triple collocation (TC) technique to retrieve both the277

total error variance and temporal auto-correlation coefficient for serial errors in SMAP soil278

moisture retrievals derived from different retrieval algorithms. The current SMAP base-279

line soil moisture retrieval algorithm (SCA) assumes accurate estimates of optical depth280

(τ) can be obtained from a VWC seasonal climatology. Its potential alternative, the dual281

channel algorithm or DCA, relaxes this assumption by simultaneously retrieving both soil282

moisture and τ but is potentially less accurate with regards to the total retrieval error vari-283

ance. Our central aim here is to better understand the temporal error characteristics of284

retrievals acquired from both algorithms using a TC-based approach.285

As expected, spatial patterns of error variance for both algorithms are closely related286

to (annually-averaged) mean VWC conditions. Nevertheless, in terms of total error, SCA-287

V slightly outperforms DCA, except for regions with large τ inter-annual variability (Fig-288

ure 1). In addition, error in SCA-V retrievals contains significant auto-covariance within289

the eastern CONUS. In contrast, errors in DCA retrievals exhibit generally negligible er-290

ror auto-covariance. We demonstrate that SCA-V and DCA retrieval error auto-covariance291

differences are closely related to the error auto-covariance of the inter-annual τ anomalies292

neglected by SCA-V (Figure 2).293

This leads us to the overall conclusion that both the presence of auto-correlated294

errors in SCA-V retrievals and the superior performance of the DCA algorithm in cer-295

tain areas can be linked directly to the neglect of inter-annual τ anomalies by the SCA-296

V algorithm. Re-processing SCA-V retrievals using real-time (e.g., the 8-day or 16-day)297

NDVI composites (to produce a real-time τ product) will likely significantly reduce auto-298

correlated errors. However, these benefits will have to be weighed against the impact of299

increased random errors in near-real-time NDVI composites required by SCA-V.300

Although DCA contains larger total error than SCA-V, dual-polarization based soil301

moisture retrievals should theoretically outperform single-polarization retrievals of soil302

moisture. This departure from theoretical expectations is likely due to structural errors in303

the simplified radiative transfer equation currently used for both DCA and SCA-V (e.g.,304

the neglect of polarization dependence in b - see Entekhabi et al. 2014) which are not ex-305

plicitly considered here. Future work will explore the possibility of applying TC-based306

evaluation approaches to diagnose a wider range of structural problems affecting both re-307

trieval approaches.308

–11–



Acknowledgments309

The authors thank Dr. Fan Chen for preparing the ASCAT data. This paper was partially310

supported by the NASA SMAP mission through award NNH12ZDA001N-SMAP. The311

SMAP data used in this study is available at https : //nsidc.org/data/smap/smap − data.html,312

and the NLDAS2 data is available at https : //ldas.gsfc.nasa.gov/nldas/.313

References314

Albergel, C., C. Rüdiger, T. Pellarin, J.-C. Calvet, N. Fritz, F. Froissard, D. Suquia, A. Pe-315

titpa, B. Piguet, and E. Martin (2008), From near-surface to root-zone soil moisture us-316

ing an exponential filter: an assessment of the method based on in-situ observations and317

model simulations, Hydrology and Earth System Sciences Discussions, 12, 1323–1337,318

doi:10.5194/hess-12-1323-2008.319

Brown, M. E., V. Escobar, S. Moran, D. Entekhabi, P. E. O’Neill, E. G. Njoku, B. Doorn,320

and J. K. Entin (2013), NASA’s soil moisture active passive (SMAP) mission and op-321

portunities for applications users, Bulletin of the American Meteorological Society, 94(8),322

1125–1128, doi:https://doi.org/10.1175/BAMS-D-11-00049.1.323

Chan, S., B. Rajat, H. Raymond, J. Tom, and K. John (2013), Ancillary data report: Vege-324

tation water content, JPL D-53061.325

Chan, S., R. Bindlish, P. O’Neill, T. Jackson, E. Njoku, S. Dunbar, J. Chaubell, J. Piep-326

meier, S. Yueh, D. Entekhabi, et al. (2017), Development and assessment of the327

SMAP enhanced passive soil moisture product, Remote Sensing of Environment, doi:328

10.1016/j.rse.2017.08.025.329

Chan, S. K., R. Bindlish, P. E. O’Neill, E. Njoku, T. Jackson, A. Colliander, F. Chen,330

M. Burgin, S. Dunbar, J. Piepmeier, et al. (2016), Assessment of the SMAP passive soil331

moisture product, IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4994–332

5007, doi:10.1109/TGRS.2016.2561938.333

Chen, F., W. T. Crow, A. Colliander, M. H. Cosh, T. J. Jackson, R. Bindlish, R. H. Re-334

ichle, S. K. Chan, D. D. Bosch, P. J. Starks, et al. (2017), Application of triple collo-335

cation in ground-based validation of soil moisture active/passive (SMAP) level 2 data336

products, IEEE Journal of Selected Topics in Applied Earth Observations and Remote337

Sensing, 10(2), 489–502, doi:10.1109/JSTARS.2016.2569998.338

Colliander, A., T. Jackson, R. Bindlish, S. Chan, N. Das, S. Kim, M. Cosh, R. Dunbar,339

L. Dang, L. Pashaian, et al. (2017), Validation of SMAP surface soil moisture prod-340

–12–



ucts with core validation sites, Remote Sensing of Environment, 191, 215–231, doi:341

https://doi.org/10.1016/j.rse.2017.01.021.342

Crow, W., and M. Van den Berg (2010), An improved approach for estimating observa-343

tion and model error parameters in soil moisture data assimilation, Water Resources Re-344

search, 46(12), doi:10.1029/2010WR009402.345

Crow, W. T., and M. T. Yilmaz (2014), The auto-tuned land data assimilation system (at-346

las), Water resources research, 50(1), 371–385, doi:10.1002/2013WR014550.347

Dorigo, W. A., K. Scipal, R. M. Parinussa, Y. Liu, W. Wagner, R. A. De Jeu, and348

V. Naeimi (2010), Error characterisation of global active and passive microwave soil349

moisture datasets, Hydrology and Earth System Sciences, 14(12), 2605–2616, doi:350

10.5194/hess-14-2605-2010.351

Draper, C., R. Reichle, R. de Jeu, V. Naeimi, R. Parinussa, and W. Wagner (2013),352

Estimating root mean square errors in remotely sensed soil moisture over con-353

tinental scale domains, Remote Sensing of Environment, 137, 288–298, doi:354

https://doi.org/10.1016/j.rse.2013.06.013.355

Entekhabi, D., E. G. Njoku, P. E. O’Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein,356

J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, et al. (2010), The soil mois-357

ture active passive (SMAP) mission, Proceedings of the IEEE, 98(5), 704–716, doi:358

10.1109/JPROC.2010.2043918.359

Entekhabi, D., S. Yueh, P. E. O’Neill, K. H. Kellogg, A. Allen, R. Bindlish, M. Brown,360

S. Chan, A. Colliander, W. T. Crow, et al. (2014), SMAP handbook–soil moisture active361

passive: Mapping soil moisture and freeze/thaw from space.362

Gruber, A., C.-H. Su, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner (2016), Recent363

advances in (soil moisture) triple collocation analysis, International Journal of Applied364

Earth Observation and Geoinformation, 45, 200–211, doi:10.1002/2013JD021043.365

Koster, R. D., and M. J. Suarez (2001), Soil moisture memory in climate366

models, Journal of hydrometeorology, 2(6), 558–570, doi:10.1175/1525-367

7541(2001)002<0558:SMMICM>2.0.CO;2.368

Koster, R. D., L. Brocca, W. T. Crow, M. S. Burgin, and G. J. De Lannoy (2016), Precip-369

itation estimation using L-band and C-band soil moisture retrievals, Water Resources370

Research, 52(9), 7213–7225, doi:10.1002/2016WR019024.371

McColl, K. A., S. H. Alemohammad, R. Akbar, A. G. Konings, S. Yueh, and D. En-372

tekhabi (2017), The global distribution and dynamics of surface soil moisture, Nature373

–13–



Geoscience, 10(2), 100–104, doi:10.1038/ngeo2868.374

Montzka, C., H. R. Bogena, M. Zreda, A. Monerris, R. Morrison, S. Muddu, and375

H. Vereecken (2017), Validation of spaceborne and modelled surface soil moisture prod-376

ucts with cosmic-ray neutron probes, Remote Sensing, 9(2), 103, doi:10.3390/rs9020103.377

Naeimi, V., K. Scipal, Z. Bartalis, S. Hasenauer, and W. Wagner (2009), An im-378

proved soil moisture retrieval algorithm for ERS and METOP scatterometer observa-379

tions, IEEE Transactions on Geoscience and Remote Sensing, 47(7), 1999–2013, doi:380

10.1109/TGRS.2008.2011617.381

O’Neill, P., C. Steven, N. Eni, J. Tom, and B. Rajat (2015), Algorithm theoretical basis382

document level 2 & 3 soil moisture (passive) data products, JPL D-66480.383

Ray, R. L., A. Fares, Y. He, and M. Temimi (2017), Evaluation and inter-comparison of384

satellite soil moisture products using in situ observations over texas, US, Water, 9(6),385

372, doi:10.3390/w9060372.386

Scipal, K., T. Holmes, R. De Jeu, V. Naeimi, and W. Wagner (2008), A possible solution387

for the problem of estimating the error structure of global soil moisture data sets, Geo-388

physical Research Letters, 35(24), doi:10.1029/2008GL035599.389

Wagner, W., G. Lemoine, and H. Rott (1999), A method for estimating soil moisture from390

ERS scatterometer and soil data, Remote sensing of environment, 70(2), 191–207, doi:391

10.1016/S0034-4257(99)00036-X.392

Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge,393

H. Wei, J. Meng, et al. (2012), Continental-scale water and energy flux analysis and394

validation for the North American Land Data Assimilation System project phase 2395

(NLDAS-2): 1. intercomparison and application of model products, Journal of Geophys-396

ical Research: Atmospheres, 117(D3), doi:10.1029/2011JD016048.397

Zwieback, S., W. Dorigo, and W. Wagner (2013), Estimation of the temporal398

autocorrelation structure by the collocation technique with an emphasis on399

soil moisture studies, Hydrological sciences journal, 58(8), 1729–1747, doi:400

http://dx.doi.org/10.1080/02626667.2013.839876.401

–14–



Figure 1. (a): The squared root of total error variance for SCA-V retrievals (a) and DCA retrievals (b); (c):

average VWC conditions within the study period; (d): differences between square root of SCA-V and DCA

total error variances (Dσ = σsca − σdca); (e): the standard deviation of inter-annual vegetation opacity (τ)

anomalies (στ ); (f): Dσ as a function of στ ; green (red) circles in (f) indicate that the mean of each Dσ bin is

(not) significantly (at p = 0.05 confidence) different from zero; the error bar represents the inter-quartile range.

Grey shading in maps indicates that the SNR of the SMAP or the ASCAT retrievals are not significantly (at p

= 0.05 confidence) larger than 0.1 [-].
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Figure 2. (a): Serial lag-1 error auto-covariance for SCA-V retrievals; (b): serial lag-1 error auto-

covariance of DCA retrievals; (c): difference in the error auto-covariance of SCA-V and DCA retrievals

(DL = Lsca − Ldca); (d): serial lag-1 auto-covariance of inter-annual τ anomalies; (e): DL as a function of

Lτ ; green (red) circles in (e) indicate that the mean of each DL bin are (not) significantly (at p = 0.05 confi-

dence) different from zero; the error bar represents the inter-quartile range. Grey shading in maps indicates

that the SNR of the SMAP or the ASCAT retrievals are not significantly (p = 0.05 confidence) larger than 0.1

[-].
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